1 Chapter 5: Ecosystem services and human well-being

2	Autho	ors: VR I	Haden, D Liptzin, TS Rosenstock, J VanDerslice, S Brodt, BL Yeo, R Dahlgren, K Scow,
3			J Riddell, G Feenstra, A Oliver, K Thomas, D Kanter, TP Tomich
4			Section 5.4: Climate regulation
5	Cont	ents:	
6	Main r	nessage	es
7	5.4	Climat	te regulation
8		5.4.0	Introduction
9		5.4.1	Measures of radiative forcing and global climate change
10		5.4.2	Effects of reactive N on the global climate
11		5.4.3	Effects of reactive N on N_2O emissions
12		5.4.4	Effects of reactive N on biosphere C stocks and the efflux of $\rm CO_2$ and $\rm CH_4$
13		5.4.5	Effects of reactive N on atmospheric gases and aerosols
14		5.4.6	Future research needs in California
15			
16	Boxes		
17	5.4.1	Nitrou	s oxide: a greenhouse gas and an ozone depleting substance
18	5.4.2	Climat	e impacts of fertilizer manufacture
19			
20	Figure	s:	

21	5.4.1	Potential mechanisms regulating the terrestrial ecosystem responses of CO_2 , CH_4 and N_2O
22		production and consumption to increased availability of reactive N
23	5.4.2	Types of uncertainty in nitrogen's impact on global climate regulation.
24	5.4.3	Influence of anthropogenic reactive N on global radiative forcing on the present climate
25	5.4.4	The climate change impacts of US reactive nitrogen emissions from combustion and agriculture,
26		in common units of equivalent Tg of CO $_2$ (Tg CO $_2$ e) on a 20-year and 100-year global
27		temperature potential (GTP) basis
28	5.4.5	Global mean radiative forcings (RF) and their 90% confidence intervals in 2007 for various agents
29		and mechanisms (a) and probability distribution of the global mean combined radiative forcing
30		from all anthropogenic agents shown in (b)
31	5.4.6	Global annual emissions of anthropogenic GHGs from 1970 to 2004 (a). Share of different
32		anthropogenic GHGs in total emissions in 2004 in terms of CO2-eq (b). Share of different sectors
33		in total anthropogenic GHG emissions in 2004 in terms of CO2-eq (c). Forestry includes
34		deforestation
35		
36	Tables	
37	5.4.1	Atmospheric lifetimes and global warming potential (GWP) values for CO_2 , CH_4 , and N_2O
38	5.4.2	Processes altered by reactive N that have radiative forcing effects. The size of the short-term
39		(20yr) and long-term (100yr) effect is relative to other processes altered by reactive N
40	5.4.3	California greenhouse gases and percent of annual total emitted in 1990, 2000 and 2009
41	5.4.4	Estimated emissions of N_2O , NO_x and NH_3 by source and fate in California during 2005

42	5.5.5	Default values and uncertainty range for IPCC emission factors used to calculate direct and
43		indirect N_2O emissions from agricultural soils in the California Greenhouse Gas Emissions
44		Inventory
45		
46	Figures	
47	5.4.1	Potential mechanisms regulating the terrestrial ecosystem responses of CO_2 , CH_4 and N_2O
48		production and consumption to increased availability of reactive N.
49	5.4.2	Types of uncertainty in nitrogen's impact on global climate regulation.
50	5.4.3	Influence of anthropogenic reactive N on global radiative forcing on the present climate
51	5.4.4	The climate change impacts of US reactive nitrogen emissions from combustion and agriculture,
52		in common units of equivalent Tg of CO2 (Tg CO $_2$ e) on a 20-year and 100-year global
53		temperature potential (GTP) basis.
54	5.5.5	Global mean radiative forcings (RF) and their 90% confidence intervals in 2007 for various agents
55		and mechanisms (a) and probability distribution of the global mean combined radiative forcing
56		from all anthropogenic agents shown in (b).
57	5.4.6	Global annual emissions of anthropogenic GHGs from 1970 to 2004 (a). Share of different
58		anthropogenic GHGs in total emissions in 2004 in terms of CO_2e (b). Share of different sectors in
59		total anthropogenic GHG emissions in 2004 in terms of CO_2e (c).
60		
61	Main	Messages

- 62 Human activities that increase reactive N have numerous competing effects on the ecosystem and
- 63 biogeochemical processes that regulate the Earth's climate. Some processes have net warming effects

64	that exacerbate climate change, while other processes have net cooling effects that partially offset the
65	prevailing trend of a warming climate.
66	
67	Emissions of N ₂ O have a long term warming effect on global climate change. As the third most
68	important greenhouse gas behind CO_2 and CH_4 , N_2O accounts for approximately 8% of total global and
69	3% of total statewide greenhouse gas emissions. The vast majority of N_2O emissions emitted globally
70	and in California come from agricultural sources (N fertilizers, livestock, N ₂ -fixing crops), while fossil fuel
71	combustion, sewage treatment and industrial sources are also minor sources.
72	
73	N deposition and fertilization tends to have an overall cooling effect on climate by enhancing
74	terrestrial C sequestration in plant biomass and soils. Increased C sequestration due to N input has
75	been documented for many forest, grassland, wetland and agricultural ecosystems in North America (24
76	- 177 kg C per kg N deposited per year), a trend which has also been observed in California.
77	
78	The formation of O ₃ from NO _x has both warming and cooling effects on the earth's climate. Increased
79	ground-level O_3 has adverse effects on plant photosynthesis and CO_2 uptake, which decrease C
80	sequestration by crops and natural vegetation. While estimates suggest that O_3 decreases plant C
81	sequestration by 14 -23% globally, more research is needed to quantify the extent of this impact in
82	California. In contrast, O_3 can also have a small cooling effect on climate by increasing the concentration
83	of hydroxyl radicals (OH), which in turn reduce the lifetime and overall burden of CH_4 in the
84	atmosphere.

86	Atmospheric aerosols formed from NO $_{\rm x}$ and NH $_{\rm 3}$ have a short term cooling effect on climate by
87	reflecting and scattering solar radiation and stimulating cloud formation and the albedo effect. Since
88	the formation of aerosols from NO_x and NH_3 are generally linked to different pollution sources (e.g.,
89	fossil fuel \rightarrow NO _x , livestock \rightarrow NH ₃), the relative contribution of each pollutant and the chemical
90	composition of resulting aerosols is likely to vary considerably across California's landscape.
91	
92	Estimates suggest that anthropogenic sources of N have a modest net-cooling effect on the Earth's
93	climate in the near-term (20 yr), but a net warming effect in the long-term (100 yr) as the prolonged
94	effects of N_2O dominate the radiative balance. It should also be noted that the overall effects of N on
95	the climate are relatively small compared to $\rm CO_2$ from fossil fuel combustion (8% globally, 3-4% in
96	California).

98 **5.4 Climate regulation**

99 **5.4.0 Introduction**

Nitrogen plays a well-established role in regulating the Earth's climate. Human activities that increase 100 101 the amount of reactive N that enters terrestrial and aquatic ecosystems can alter many biogeochemical 102 processes that affect the Earth's climate balance (Figure 5.4.1). Most notably, increases in reactive N can change the emission and uptake of the three important greenhouse gases: carbon dioxide (CO₂), 103 methane (CH₄), and nitrous oxide (N₂O). Emissions of N oxides (NO_x) and NH₃ also have important 104 105 impacts on climate, since they are chemical precursors to ozone (O_3) and various atmospheric aerosols 106 [Box 5.4.1]. The ecosystem processes and atmospheric feedbacks involving N are complex, and thus the 107 magnitude of their effects on the global climate are often uncertain. In this section, we examine the effects of reactive N on the Earth's climate balance paying particular attention to California's contribution to climate change over time through human activities and ecosystem processes that effect global N and carbon (C) cycles.

111 [Figure 5.4.1]

112 [Box 5.4.1]

113

114 5.4.1 Measures of the radiative forcing and global climate change

Several important metrics are used to quantify the effects of ecosystem processes that regulate the 115 Earth's climate. The two most commonly used measures are radiative forcing (RF) and global warming 116 potential (GWP). Radiative forcing is a measure of the influence that a factor (e.g., greenhouse gas, 117 atmospheric aerosol) has in changing the balance of energy in the atmospheric system and is expressed 118 in Watts per square meter (W m²) of the Earth's surface. More specifically, the Intergovernmental Panel 119 on Climate Change (IPCC) calculates RF as the change in W m² relative to preindustrial conditions (i.e., 120 121 pre-1750) (IPCC 2007). The amount of heat trapped by a particular gas depends on its absorption of infrared radiation, the absorption wavelength and the atmospheric lifetime of the gas species (IPCC 122 2007). By integrating the RF caused by a 1kg pulse of given gas over a standard time period (20 yr, 100 123 yr, 500 yr) its absolute global warming potential (also expressed in W m^2) can be calculated. While the 124 125 IPCC uses the GWP over a 100yr time period in its policy frameworks, the shorter and longer time 126 frames have also proven useful for detailed modeling studies (IPCC 2001; Shine 2007). Another convention adopted by the IPCC is to express the GWP of a gas relative to an equivalent mass of CO_2 127 (IPCC 2007). As such, CO₂ is standardized to a GWP value of 1 and other gases are expressed in terms of 128 carbon dioxide equivalents (CO_2e) integrated over a 100yr time period. For example, the GWP of one kg 129 130 of N₂O over 100 years is 298 kg CO₂e (Table 5.4.1; IPCC 2007). Due to its computational simplicity, GWP

131 has been widely adopted by scientists and policy makers working under the IPCC framework. More recent work by Shine et al (2005; 2007) has introduced the global temperature potential (GTP) as an 132 additional measure for consideration by the IPCC. The GTP is calculated as the ratio between the global 133 mean surface temperature change (change in degrees K per kg⁻¹ gas) at a given future time point 134 following a pulse or sustained emission of a gas relative to CO₂ (Shine et al. 2005). Since both GWP and 135 136 GTP are measures of radiative forcing relative to CO_2 , they share many advantages as metrics useful for policy making. The main difference between GWP and GTP is that while the GWP integrates the 137 temperature change over a standard time period (i.e., the contribution of the RF at the beginning and 138 end of the time horizon is exactly equal) the GTP calculates the actual temperature change between the 139 time emitted and a precise future end point (i.e., the RF closer to the end point contributes relatively 140 more) (Shine et al. 2005). While GTP has yet to gain widespread usage by the IPCC, several recent 141 142 studies by the US Environmental Protection Agency have employed this metric to assess the overall impacts of reactive N species on both short- and long-term changes in climate (Pinder et al. 2012a; 143 Pinder et al. 2012b). 144

- 145 [Table 5.4.1]
- 146

147 **5.4.2 Effects of reactive N on the global climate**

148 It is well-established that while some human activities involving reactive N result in warming effects 149 that can amplify climate change, others lead to cooling effects that minimize or offset the prevailing 150 global warming trend (Figure 5.4.2; Erisman 2011; Pinder 2012a; Pinder 2012b). For example, emissions 151 of N₂O have a strong long-term warming effect due to the atmospheric lifetime of the gas and its high 152 GWP (Table 5.4.2; Parry et al. 2007; Smith et al. 2007). In contrast, sequestration of C by natural 153 vegetation caused by increased N deposition typically has a long-term cooling effect on climate (Table 5.4.2). The effects of atmospheric aerosols also tend to cool the climate, but since they only remain in
the atmosphere for a short time period (hours-weeks) their effects are limited in duration (Table 5.4.2;
Liu and Greaver 2009; Shindell et al. 2009).

157 [Figure 5.4.2]

158 [Table 5.4.2]

159 While there is considerable uncertainty in estimating the magnitude of these countervailing processes, several recent studies have developed methods for quantifying the net effects of reactive N 160 on the global climate (Figure 5.4.2). Principal among these is a study by Erisman et al. (2011) which 161 concluded that reactive N has an overall net cooling effect on RF for the Earth's present climate (-0.24 162 W m⁻²), albeit with a wide uncertainty range (-0.5 to +0.2 to W m⁻²) (Figure 5.4.3). Using the same 163 methodology, Butterbach-Bahl et al. (2011) also found a net cooling effect of anthropogenic N from 164 165 European sources on global RF. In contrast, Pinder et al. (2012a, 2012b) used an alternative method to calculate the change in GTP due to reactive N sources in the United States over time. Consistent with 166 previous work they also found a modest cooling effect of reactive N in the near-term (20 yr) due mostly 167 to the short-lived effects of O₃ and N-derived aerosols, but indicated that warming will likely occur in 168 the longer-term (100 yr) when the prolonged effects of N₂O dominate the radiative balance (Figure 169 170 5.4.4). However, it should also be noted that the net effects of N on climate are very small compared to CO₂ from fossil fuel combustion. Thus, the modest cooling effect of reactive N in the near-term is 171 thought to provide only a slight offset to the significant warming trend that is driven mostly by global 172 CO₂ emissions (Figure 5.4.5). 173

174 [Figure 5.4.3]

175 [Figure 5.4.4]

176 [Figure 5.4.5]

Thus far, the results of these global and national studies have not been down-scaled or disaggregated for California. However, the convergence of evidence indicates that the climate forcing effects of reactive N in California are likely similar to those observed in the US and Europe. While a full radiative balance for reactive N in California is beyond the scope of this analysis, the following sections summarize the existing data and knowledge on the main N-related processes in California that influence climate change in both the short and long term.

183

184 5.4.3 Effects of reactive N on N₂O emissions

As indicated above, emissions of N₂O have a long-term warming effect on the global climate that is well-185 established in the scientific literature (Figure 5.4.2; Ramaswamy et al. 2007). The primary biochemical 186 mechanisms that produce N₂O are nitrification and denitrification, which are mediated by aerobic 187 nitrifying bacteria and anaerobic denitrifing bacteria (Figure 5.4.1). Recent estimates suggest that 188 approximately 57 - 62% of global N₂O emissions come from natural sources (10.5-11 Tg N yr⁻¹), with the 189 190 remaining 38 - 43% attributed to anthropogenic sources (6.7 - 7.8 Tg N yr⁻¹) (Forster et al. 2007; Syakila and Kroeze 2011). Furthermore, human efforts to fix atmospheric N into usable reactive forms through 191 the Haber-Bosch process and the cultivation of N₂-fixing crops have increased N₂O concentrations in the 192 atmosphere by about 16% relative to pre-industrial times (Forster et al. 2007; Park et al. 2012). 193 194 Emissions of N_2O come from multiple anthropogenic sources including N fertilizers, N_2 -fixing crops, 195 livestock urine and manure, sewage and wastewater, biomass burning, and fossil fuel combustion (Parry et al. 2007; Smith et al. 2007). Terrestrial and aquatic ecosystems are also sources of non-anthropogenic 196 N₂O emissions, but significant losses of N from anthropogenic sources to natural and semi-natural 197 ecosystems (e.g., via NO_3 leaching, NH_3 volatilization, NO_x emissions, N deposition) make it difficult to 198 accurately determine whether a molecule of reactive N originates from natural or human fixation. 199

200 Globally N₂O accounts for about 8% of total anthropogenic GHG emissions if all are expressed in CO₂e, making it the third most important GHG behind CO₂ (77%) and CH₄ (14%) (Figure 5.4.6; IPCC 201 2007; Smith et al. 2007). In California, a relatively small fraction (3-4 %) of the state's total GHG 202 203 emissions are attributed to N_2O , and these emissions have remained at a relatively stable level between 204 1990 and 2009 (Table 5.4.3; Figure 5.4.2; CARB 2010). This stable trend for N₂O has also been observed 205 nationally and has been attributed to widespread adoption of catalytic converters in recent decades 206 (which reduce both NO_x and N₂O) and has off-set small increases in N₂O from fertilizer consumption. During the 1990s and 2000s, N₂O emissions on the order of 15 -16 MT CO₂e were emitted in California 207 each year, with 68% of N₂O emissions coming from agriculture (Table 5.4.3; Table 5.4.4). The remaining 208 N₂O emissions in California come from sewage treatment (7%) and fossil fuel combustion in the 209 transportation, energy, and industrial sectors (24%) (Table 5.4.4). 210

- 211 [Figure 5.4.6]
- 212 [Table 5.4.3]
- 213 [Table 5.4.4]
- 214

215 Emissions of N₂O from California agriculture

Despite N₂O being a small fraction of the state's overall GHG emissions, between 30 and 40% of the emissions attributed to agriculture in California come from N₂O emissions (CARB 2010; Haden et al. 2012). California's state-wide estimates for the various agricultural sources of N₂O are based on emissions inventory guidelines developed by the Intergovernmental Panel on Climate Change (IPCC 2006). The IPCC's Tier 1 methods use default emission factors (EFs) derived from a "bottom-up" assessment of field experiments covering a wide range of global crops, environments, water management regimes, N sources and nutrient management practices (Bouwman et al. 2002a; Bouwman 223 2002b; Stehfest & Bouwman 2006). These default EFs calculate emissions using a mean value for the proportion of applied N from synthetic fertilizer, N2-fixing crops, organic fertilizer, and manure that is 224 225 directly and indirectly emitted as N₂O (Table 5.4.5). Direct emissions, in this case, refer to those which 226 arise from the soil where the N is applied, whereas indirect emissions are those that occur elsewhere in 227 the environment subsequent to leaching or volatilization losses. Using this approach the EF for direct 228 N₂O emissions from most agricultural soils is 1% of applied N, with an additional 0.35-0.45% of applied N emitted indirectly following leaching and volatilization (IPCC 2006). However, it should be noted that 229 considerable natural variation in N₂O flux measurements across many environmental conditions and 230 cropping systems introduces a high degree of uncertainty in the default EFs. For example, the 231 uncertainty in direct N₂O emissions from agricultural soils ranges from 0.003 – 0.03 kg N₂O – N per kg N 232 applied (Table 5.4.5; See Data Table 21). Increasingly, region-specific EFs derived from local agricultural 233 234 experiments and activity data (i.e. Tier 2 methods) or more sophisticated process-based biogeochemical models (i.e. Tier 3 methods) are being used to further improve the precision and reduce the uncertainty 235 of N₂O estimates (Haden et al. 2012). The region-specific EF used in the California N Assessment to 236 estimate N₂O emissions from 33 California crop categories is recent example of the former (See Chapter 237 238 7, Figure 7.6).

239 [Table 5.4.5]

In contrast to the "bottom up" emissions inventories that have been used by most national and subnational governments, recent studies by Crutzen et al. (2008), Davidson (2009) and Smith et al. (2012) that employ "top-down" accounting methodologies inclusive of both direct and indirect N_2O emissions, suggest that not all of the N_2O emitted over the lifecycle of a newly fixed reactive N molecule is accounted for in IPCC's default EFs. It should also be noted that the CO_2 , CH_4 and N_2O emitted during the Haber-Bosch process used to manufacture N fertilizers are not included in either the top-down or

246	bottom-up accounting frameworks for agricultural emissions referred to above (Box 5.4.2). In the
247	Crutzen et al. (2008) study, which uses a N budget approach informed by data on the size of global N
248	sources and sinks and the known rate of N_2O accumulation in the atmosphere, approximately 3-5% of
249	newly fixed N is ultimately emitted as N_2O . Building on this approach, Smith et al. (2012) found a good
250	fit between observed atmospheric N_2O concentrations from 1860 to 2000 and estimates of N_2O
251	emissions based on a 4% EF by using estimates of reactive N entering the agricultural cycle that account
252	for both mineralization of soil organic N following land use change and NOx deposited from the
253	atmosphere. In the approach used by Davidson (2009), they assume that N molecules in the fertilizer
254	used to produce animal feed are later recycled in manure applied to soil. The results of their analysis
255	indicate that approximately 2% of N in manure and 2.5 % of N in fertilizer is eventually converted to
256	N_2O . It is important to note that while these top-down methods indicate 2-3 fold higher N_2O emissions
257	than the IPCC's Tier 1 approach, the contribution of N_2O to California's total GHG emissions (< 5-10%) is
258	still relatively minor compared to CO_2 . These recent studies also highlight the fact that while the IPCC
259	default EFs provide a computationally simple way to estimate N_2O emissions, the high degree of
260	uncertainty can restrict the precision of national and regional inventory estimates (Smith et al.2010).
261	In an effort to improve estimates of N_2O emissions from California agriculture, state agencies (e.g.
262	California Energy Commission, California Air Resources Board) have commissioned a number of recent
263	field studies to measure emissions for California cropping systems with goals of 1) calibrating and
264	validating soil biogeochemical models (e.g., DAYCENT Model, Denitrification-Decompostion Model), 2)
265	assessing the impact of alternative agricultural practices (De Gryze et al. 2009; De Gryze et al. 2010;
266	Horwath and Burger 2012; Burger et al. 2005). As a case in point, Horwath and Burger (2012) recently
267	published a report of California-based field studies measuring N_2O emissions in tomato, wheat, alfalfa,

268 and rice cropping systems. They found that cumulative N₂O emissions from furrow-irrigated tomatoes

ranged between 0.67 to 4.69 kg N₂O-N ha⁻¹ and had EFs between 0.92 and 2.08% of applied N. In wheat, 269 they obtained EFs ranging from 0.24 to 0.98% of applied N (Horwath and Burger 2012), results that were 270 271 consistently lower than the well-established 1% IPCC default EF and the 1.21% mean EF derived from 25 global wheat studies (Linquist et al 2012). Horwath and Burger (2012) also found that EFs for alfalfa, a N-272 fixing crop, ranged from 4.5% in a 1 year old stand to 12.06 % in an adjacent 5 year old stand. The 273 annual N_2O emissions measured in rice systems ranged from 0.26 to 0.85 kg N_2O -N ha⁻¹ and EFs 274 275 between 0.12 and 0.74% and were similar to the mean EF estimated in a recent meta-analysis of 17 other rice experiments conducted globally (Horwath and Burger 2012; Linquist et al, 2012). While a few 276 studies have also begun to examine N₂O emissions in California orchards and vineyards, more 277 experimental data are needed to validate biogeochemical models for the state's diverse perennial and 278 279 annual cropping systems (Steenworth and Balina 2010; Smart et al. 2011; Suddick et al. 2011).

280 [Box 5.4.2]

281

282 Emissions of N₂O from sewage treatment, transportation, energy generation, and industry

283	As with agricultural soils, the N_2O emissions that arise from sewage and wastewater treatment facilities
284	are associated with the breakdown and mineralization of N compounds present in the wastewater and
285	effluent. Again, nitrification and denitrification are the main mechanisms driving N_2O emissions. In
286	general, the N_2O emissions occurring directly within the treatment facilities are relatively small
287	compared to the effluent that is discharged into surface water bodies. Overall, sewage and wastewater
288	treatment account for approximately 7% of California's N_2O emissions (Table 5.4.4). In addition to
289	significant amounts of CO_2 , the burning of fossil fuels also produces N_2O and accounts for approximately
290	24% of California's N_2O emissions (Table 5.4.4). In the industrial sector, the production of nitric acid via
291	the oxidation of NH ₃ and the application of concentrated nitric acid as an oxidizer for production of

292	various chemicals both result in N_2O emissions. In California, N_2O emissions from nitric acid production
293	in California are small and have declined from 535,000 MT CO $_2$ e in 1990 to less than 200,000 MT of
294	CO_2e in 2008 (CARB 2010). Together, N_2O emissions from wastewater treatment, fossil fuel combustion
295	and nitric acid production amount to less than 1% of California's total anthropogenic GHG emissions,
296	which is dominated mostly by CO_2 and to a lesser extent CH_4 (CARB 2010).
297	
298	5.4.4 Effects of reactive N on biosphere C stocks and the efflux of $\rm CO_2$ and $\rm CH_4$
299	Effects of N on terrestrial C Sequestration
300	One of the most prominent cooling effects of reactive N is its stimulation of plant growth in terrestrial
301	ecosystems, which removes CO_2 from the atmosphere and sequesters C in plant biomass (Butterbach-
302	Bahl et al. 2011; Pinder et al. 2012a). It is well-established that the net primary productivity (NPP) of
303	most ecosystems is limited by the availability of N (Figure 5.4.1; LeBauer and Treseder 2008).
304	Consequently, estimates suggest that N deposition in temperate North American forests increases
305	above- and below-ground C stocks by 24 - 177 kg C per kg N deposited per year (Sutton et al. 2008; Liu
306	and Greaver 2009; De Vries et al. 2009; Thomas et al. 2010). While generally lesser in magnitude, N
307	deposition also increases C sequestration in the vegetation of temperate grasslands and wetlands
308	(LeBauer and Treseder 2008).
309	Soils are an even larger sink for carbon, with 2-3 times more C stored in soils than in vegetation

globally (White et al. 1999). Most evidence from forest ecosystems suggests that sequestration of C in
soil increases with higher rates of N deposition (Fenn et al. 1996). In agroecosystems, the application of
N fertilizers and manure can also build soil C stocks (Ladha et al. 2011; Pinder et al. 2012a). The main
mechanisms responsible for N-induced C storage in soil are greater inputs of organic matter through leaf

litter, crop residues, decreased rates of litter decomposition, and decreased soil respiration (Knorr et al.
2005; Janssens et al. 2010).

Several studies of California forest ecosystems have found that N deposition contributes to 316 317 increased C storage in both vegetation and soil organic matter. For example, in Southern California's San 318 Gabriel and San Bernardino Mountains higher rates of N deposition were associated with increased 319 rates of biomass accumulation in over-story trees, leaf litter on the forest floor, and soil organic matter levels (Fenn et al. 1996). Working in the Sierra Nevada Mountains, Powers and Reynolds (1999) found 320 that water is generally the most limiting factor for forest growth, but also documented tree growth 321 responses and C sequestration with increased N inputs. While the above-mentioned studies linking 322 reactive N to increased C storage in California's vegetation and soils are broadly consistent with national 323 and international studies (Pinder et al. 2012a; Pinder 2012b; Erisman et al. 2011), no efforts thus far 324 325 have been made to quantify the total amount of C sequestered in California due to N deposition and application nor its relative contribution to global climate change. 326

In some cases, excessive N inputs can lead to "N saturation" where the negative effects of soil 327 328 acidification, base-cation leaching, aluminum toxicity, and Fe immobilization are thought to overwhelm the positive effects of N fertilization, ultimately leading to forest decline and loss of stored C (Aber et al. 329 330 1989; Matson et al. 2002; Bowman et al. 2008). The adverse effects of excess N are also likely to differ among plant species and ecosystems. Instances of N saturation have been reported in the forests of 331 California's San Bernardino Mountains, though measurable losses of C from forest decline were not 332 observed in this case (Fenn et al. 1996). Furthermore, these authors hypothesize that the high base 333 334 saturation of arid forest soils in the Western US make decline less likely than in other forest ecosystems 335 (Fenn et al. 2003). While more long-term research is needed to determine if N saturation from continued air pollution will eventually lead to losses of stored C, it is provisionally agreed upon by most 336

that inputs of reactive N generally have a positive effect on C sequestration in California's ecosystems
(Figure 5.4.2). That said, it is important to note that plant biomass and soils are not permanent sinks for
carbon and a significant fraction of the carbon will eventually be returned to the atmosphere due
following plant death, harvest, decomposition, and wild-fire. Future research conducted in California is
therefore critically important, not just to understand the N response from different ecosystems and
plant species, but also to determine the time-scales of carbon storage and loss to the atmosphere.

343

344 Effects of N on CH₄ emissions in terrestrial and wetland ecosystems

In most terrestrial and wetland ecosystems CH₄ production and oxidation by soil microbes occurs 345 concurrently, and the balance of these processes regulates the net flux of CH₄ to the atmosphere 346 (Bodelier and Laanbroek 2004; Liu and Greaver 2009). As discussed above, enrichment of N generally 347 348 increases the growth of vegetation and the amount of organic matter present in soil. The increased availability and mineralization of organic C subsequently drives greater O₂ consumption and creates a 349 more anaerobic environment in the soil. At the same time, higher levels of NH₄ in soil may also reduce 350 the rate of CH₄ oxidation to CO₂ by methanotrophic bacteria. Together these processes provide more C 351 substrate and more suitable redox conditions for methanogenic bacteria, thus stimulating the net 352 production of CH₄ (Figure 5.4.1; Liu and Greaver 2009). 353

Liu and Greaver (2009) carried out a meta-analysis of existing studies which found that N addition via fertilization and deposition increased in CH₄ production by 95% and decreased CH₄ oxidation by 38% when averaged across grassland, wetland and anaerobic agricultural systems. However, when each ecosystem type was analyzed separately the effect of N addition on both CH₄ production and CH₄ oxidation was only significant in anaerobic agricultural fields. When combined, these processes result in more total CH₄ entering the atmosphere, albeit only a very small amount more

360	since agricultural soils tend to be weak sinks. Consequently, when Liu and Greaves estimates were used
361	in recent studies the overall warming effect of N on net CH_4 emissions occurring in anaerobic
362	agricultural fields was found to be virtually negligible at both the US national scale (Figure 5.4.4; Pinder
363	et al. 2012) and the global scale (Figure 5.4.5; Erisman et al. 2011). At present, no studies have
364	quantified the overall effect of reactive N on CH_4 emissions in California. However, it is reasonable to
365	assume that the universal biochemical processes that govern CH_4 emissions in soils will yield results in
366	California that are similar to those observed in other wetland, forest, grassland and agricultural
367	ecosystems (Figure 5.4.2).

369 5.4.5 Effects of reactive N on atmospheric gases and aerosols

370 Effects of N and O_3 on ecosystems and the atmosphere

As discussed in Chapter 5.3, emissions of NO_x and NH₃ have a multitude of effects on the chemistry of 371 atmospheric gases and the formation of O₃ and aerosols, many of which have important implications for 372 373 the Earth's climate. Most importantly, NO_x and volatile organic compounds play a role in the formation of tropospheric O₃, which has a warming effect on the climate (Pinder et al. 2012a) through its adverse 374 effects on plant photosynthesis and CO₂ uptake (Felzer et al. 2004; Pan et al. 2009; Arneth et al. 2010; 375 See Chapter 5.3). The damaging effects of tropospheric O_3 on plant growth are estimated to decrease 376 377 the ability of the world's vegetation to sequester atmospheric CO_2 by as much as 14-23% (Figure 5.4.4; 378 Sitch et al. 2007; Pinder et al. 2012b). While NO_x and O_3 concentrations throughout much of California have been declining since the 1970s (See Figures 5.3.3 and 5.3.6), O_3 levels during the spring and 379 summer months are still among the highest in the United States (Felzer et al. 2004). Experimental and 380 modeling studies indicate that sensitivity to tropospheric O_3 is generally highest for crops followed by 381 382 deciduous vegetation, with coniferous vegetation generally more tolerant (Felzer et al. 2004; Shrestha

and Grantz 2005; Grantz and Shrestha 2006). Recent studies by Felzer et al. (2004, 2005) suggest that in spite of high O_3 levels the overall effect on C storage in Southwestern ecosystems (inclusive of California) is lower than in the Midwestern and Southeastern regions of the United States. This result is due mainly to California's arid summer climate which constrains net primary productivity and thus the total amount of C sequestered by native vegetation. While these studies are inclusive of California, no focused efforts have been made to quantify the impact of O_3 on statewide C sequestration.

In the atmosphere O₃ also has a direct warming effect on the climate since it is a short-lived 389 greenhouse gas that effectively traps heat. At the same time, there is a small feedback chemical 390 reactions also involving interactions between O₃ and CH₄ which occur throughout the atmosphere and c 391 have a small cooling effect on the climate (Holmes et al. 2013). This is because increases in O₃ also 392 increase the concentrations of hydroxyl radicals (OH), which in turn reduce the lifetime and overall 393 burden of CH₄ in the atmosphere (Butterbach-Bahl, et al. 2011; Holmes et al. 2013). Since O₃ itself has a 394 short atmospheric lifetime, the cooling effect is very small and more important in the short-term (20 yr) 395 and almost negligible in the long-term (100 yr) (Figure 5.4.4; Pinder et al. 2012a). 396

Overall, the warming associated with the adverse effects of O_3 on vegetation and the direct 397 trapping of heat by O_3 dominate the radiative balance (Shindell et al. 2009; Erisman 2011). 398 399 Understanding these processes, as well as the small counteracting effects of O3 on atmospheric CH₄, is an emerging area of research, thus considerable uncertainty remains regarding the net effects of O₃ on 400 401 the earth's radiative balance and how the effects change over time (Ramaswamy et al. 2007). In California, more studies are needed to quantify the total amount of O₃ formed in the atmosphere, 402 403 evaluate its competing effects, and assess how strategies to reduce O_3 might impact global climate 404 change.

406 Effects of N on atmospheric aerosols

While the amount of data and level of agreement regarding the direct climate effects of greenhouse 407 gases (CO_2 , CH_4 , N_2O) is considered to be high among scientists, there remains considerable uncertainty 408 about the effects of atmospheric aerosols on the global climate due in large part to the complexity of 409 the interactions which occur between aerosolized chemicals and clouds (Anderson et al. 2003; 410 411 Ramaswamy et al. 2007). In this context, aerosols refer to any fine particulate matter or liquid droplet that is suspended in the gaseous environment. The limited evidence that is available on aerosols and 412 particulate matter derived from NO_x and NH₃ emissions are tentatively agreed by most to have a short-413 term cooling effect on the climate by scattering solar radiation and stimulating cloud formation and the 414 albedo effect (Figure 5.4.2; Shindell et al. 2009; Erisman et al. 2011). The main aerosols formed from 415 chemical reactions with NO_x and NH₃ include: ammonium nitrate (NH₄NO₃), ammonium sulfate 416 (NH_4SO_4) , ammonium bisulfate $(NH_4(SO_4)_2$, calcium nitrate $(Ca(NO_3)_2)$, and sodium nitrate $(NaNO_3)$. 417 Each of these aerosols form under different conditions, and holds differing amounts of water which 418 leads to a range of effective sizes, optical properties, and radiative effects (Butterbach-Bahl, et al. 2011). 419 The chemical complexity of atmospheric aerosols and the paucity of empirical data on their 420 effects results in a high level of uncertainty regarding the magnitude and duration of their impact on the 421 422 Earth's radiative balance (Figure 5.4.5; Ramaswamy et al. 2007). Globally, aerosols derived from NO_x and NH₃ are together estimated to have a radiative forcing of -0.38 W m², with the negative value indicative 423 of a modest cooling effect on the present climate (Shindell et al. 2009; Erisman et al. 2011). For the US, 424 Pinder et al. (2012a) found a similar cooling effect of N-derived aerosols in the near term (20 yr), but 425 considered their long-term impact on climate to be negligible relative to CO₂, CH₄, and N₂O emissions 426

and terrestrial C sequestration (Figure 5.4.4). Recent studies also suggest that the short term cooling

effect of NO_x-derived aerosols are 2 to 4 times as large as the effect of NH₃-derived aerosols (Shindell et

429 al. 2009; Pinder et al., 2012a). However, since the formation of aerosols from NO_x and NH_3 are generally linked to different pollution sources (e.g., fossil fuel \rightarrow NO_x, livestock \rightarrow NH₃) the relative contribution 430 of each pollutant is likely to vary considerably across California's landscape (See Chapter 5.3). For 431 432 example, recent studies indicate that in the San Joaquin Valley, where fossil fuel combustion and agricultural activities produce a balanced mix of NO_x and NH_3 , NH_4NO_3 tends to be the most abundant 433 434 chemical species among atmospheric aerosols (Battye et al. 2003). In parts of California where NH₃ emissions are low, NH₄NO₃ is a much more minor component of aerosols. At present, only a small 435 number of studies have tried to quantify California's total contribution of NO_x and NH₃ derived aerosols 436 to the atmosphere, and no available statewide studies are known to have estimated their net effects on 437 global climate change. 438

439

440 5.4.6 Future research needs in California

441 The recent efforts to quantify the short and long term climate impacts of reactive N at the national and global scales have established sound methodologies for understanding the anthropogenic sources and 442 environmental fate of various forms of reactive N, as well as their relative contribution to climate 443 change (Erisman et al. 2011; Butterbach-Bahl et al. 2011; Pinder et al. 2012a; Pinder et al. 2012b). Across 444 these regional scales, it is provisionally agreed upon by most that the modest cooling effect of reactive N 445 446 in the near-term is likely to be short-lived as increasing concentrations of N₂O build up in the atmosphere and exacerbate the overall warming trend driven primarily by CO_2 (Figure 5.4.2). 447 While California's contribution to Earth's radiative balance has not been fully assessed in the 448 scientific literature, it is likely that the sources of N, climate forcing processes and overall trends will be 449 similar to those reported in the large-scale regional assessments discussed above. That said, future 450 studies are still needed to confirm whether or not this is true for California in particular. For those 451

452	interested in pursuing a more comprehensive statewide analysis, the data presented in the preceding
453	mass-balance on key flows of reactive N (e.g., N_2O , NO_x , and NH_3 emissions; N deposition) may serve
454	as a useful starting point for future studies (See Chapter 4; Table 5.4.4). With an eye towards future
455	research, the following studies would be needed to complete a full assessment of California's
456	contribution to climate change through anthropogenic sources of reactive N.
457	• Field and modeling studies measuring N_2O emissions from California's diverse annual and
458	perennial cropping systems. These are needed to improve the calibration of soil biogeochemical
459	models and thus reduce the uncertainty of statewide N_2O emissions estimates.
460	- Ecological studies quantifying the effects of N deposition on both C sequestration and CH_4
461	emissions in California's natural and agricultural ecosystems.
462	• Ecological and atmospheric studies quantifying the effects of tropospheric O_3 on C
463	sequestration by native vegetation and crops in California.
464	• Atmospheric studies evaluating the effects of NO_x emitted in California on the formation of O_3 ,
465	hydroxyl radicals and the decay of CH ₄ .
466	• Atmospheric studies quantifying the radiative effects of aerosols formed from emissions of NO _x
467	and NH ₄ in California.
468	
469	
470	
471	
472	
473	

475 **References**

- 476 Aber, J.D., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S.G., Currie,
- 477 W., Rustad, L., and Fernandez, I. 1998. Nitrogen saturation in northern forest ecosystems.
- 478 *BioScience* 39: 378–386.
- Akiyama H, Yan XY, & Yagi K (2010) Evaluation of effectiveness of enhanced-efficiency fertilizers as
- 480 mitigation options for N(2)O and NO emissions from agricultural soils: meta-analysis. *Global* 481 *Change Biology* 16(6):1837-1846.
- 482 Anderson, T. L., Charlson R.J., Schwartz S.E., Knutti R., Boucher O., Rodhe H., and Heintzenberg J. 2003.
- 483 Climate forcing by aerosols—A hazy picture. *Science* 300:1103–1104.
- 484 Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P. J., Feichter, J., Korhola, A.,
- 485 Kulmala, M., O'Donnell, D., Schurgers, G., Sorvari, S., and Vesala, T. 2010. Terrestrial
- 486 biogeochemical feedbacks in the climate system, Nature Geoscience 3:525–532.
- 487 Battye, W., Aneja, V.P., and Roelle, P.A. 2003. Evaluation and improvement of ammonia emission
- 488 inventories. *Atmospheric Environment* 37:3873–3883.
- Blengini GA, Busto M. 2009. The life cycle of rice: LCA of alternative agri-food chain management

490 systems in Vercelli (Italy). Journal of Environmental Management 90: 1512-1522.

- Bouwman, A.F., Boumans, L.J.M. and Batjes, N.H. 2002a. Emissions of N₂O and NO from fertilised fields:
- 492 Summary of available measurement data. *Global Biogeochemical Cycles* 16(4), art. no. 1058.
- 493 Bouwman, A.F., Boumans, L.J.M. and Batjes, N.H. (2002b). Modeling global annual N₂O and NO
- 494 emissions from fertilised fields. *Global Biogeochemical Cycles* 16(4), art. no. 1080.

495	Burger, M., Jackson, L.E., Lundquist, E.J., Louie, D.T., Miller, R.L., Rolston, D.E., and Scow, K.M. 2005.
496	Microbial responses and nitrous oxide emissions during wetting and drying of organically and
497	conventionally managed soil under tomatoes. <i>Biology and Fertility of Soils</i> 42:109-118.
498	Butterbach-Bahl, K., Nemitz, E., and Zaehle, S. 2011. The European nitrogen assessment. Cambridge
499	University Press, Cambridge.
500	CARB (California Air Resources Board) 2009. California's 1990-2004 Greenhouse Gas Emissions Inventory
501	and 1990 Emissions Level: Technical Support Document. California Environmental Protection
502	Agency, Air Resources Board, Sacramento, California.
503	CARB (California Air Resources Board), 2010. California greenhouse gas inventory for 2000-2008.
504	Sacramento, CA: California Environmental Protection Agency, Air Resources Board.
505	Carlsson-Kanyama, A. 1998. Climate change and dietary choices - how can emissions of greenhouse
506	gases from food consumption by reduced? Food Policy 23(3/4): 277-293.
507	CEC (California Energy Commission) 2006. Inventory of California greenhouse gas emissions and sinks:
508	1990 to 2004. CEC-600-2006- 013-SF. PIER Energy-Related Environmental Research Program.
509	Sacramento, California.
510	Compton, J. E., Harrison J.A., Dennis R.L., Greaver T.L., Hill B.H., Jordan S.J., Walker J., and Campbell H.V.
511	2011. Ecosystem services altered by human changes in nitrogen cycle: A new perspective for US
512	decision making. <i>Ecology Letters</i> 14:804-815.
513	Crutzen, P.J., Mosier , A. R. , Smith, K. A., and Winiwarter, W. 2008. N_2O release from agro-biofuel
514	production negates global warming reduction by replacing fossil fuels . Atmospheric Chemistry
515	and Physics 8:385–389.
516	Davidson, E.A. 2009. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide
517	since 1860. Nature Geoscience 2:659–662.

- 518 De Gryze, S.D., et al., 2009. Modeling shows that alternative soil management can decrease
- 519 greenhouse gases. *California Agriculture* 63(2):84–90.
- 520 De Gryze, S.D., et al., 2010. Simulating greenhouse gas budgets of four California cropping systems
- 521 under conventional and alternative management. *Ecological Applications*, 20, 1805–1819.
- 522 EEA (European Environment Agency) 2010. Snapshot of Global Greenhouse Gas Emissions. Copenhagen,
- 523 Denmark. pp.16.
- 524 Erisman, J.W., Galloway, J., Seitzinger S., Bleeker, A., and Butterbach-Bahl, K. 2011. Reactive nitrogen in
- 525 the environment and its effect on climate change. *Current Opinion in Environmental*
- 526 *Sustainability* 3:281–290.
- 527 Felzer, B.S.F., Kicklighter, D.W., Melillo, J.M., Wang, C., Zhuang, Q., and Prinn, R. G. 2004. Ozone effects
- 528 on net primary production and carbon sequestration in the conterminous United States using a 529 biogeochemistry model. *Tellus* 56B, 230–248.
- 530 Felzer, B.S., Reilly, J.M., Melillo, J., Kicklighter ,D.W., Sarofim M.C., Wang C., Prinn R.G., and Zhuang Q.
- 531 2005. Future effects of ozone on carbon sequestration and climate change policy using a
- biogeochemistry model. *Climatic Change* 73:345–373.
- Fenn, M.E., Poth, M.A. and Johnson, D.W. 1996. Evidence for nitrogen saturation in the San Bernardino
 Mountains in Southern California. *Forest Ecology and Management* 82:211–230.
- 535 Fenn, M.E., Poth, M.A., Aber, J.D., Baron, J.S., Bormann, B.T., Johnson, D.W., Lemly, A.D., McNulty, S.G.,
- 536 Ryan, D.F. and Stottlemyer, R. 1998. Nitrogen excess in North American ecosystems:
- 537 Predisposing factors, ecosystems responses, and management strategies. *Ecological*
- 538 *Applications* 8:706–733.

539	Fenn, M.E., Baron, J.S., Allen, E.B., Rueth, H.M., Nydick, K.R., Geiser, L., Bowman, W.D., Sickman, J.O.,
540	Meixner, R T., Johnson, D.W., and Neitlich, P. 2003. Ecological Effects of Nitrogen Deposition in
541	the Western United States. <i>BioScience</i> 53(4):404-420.
542	Forster, P. et al. 2007. The physical science basis. Contribution of working group I to the fourth
543	assessment report of the intergovernmental panel on climate change: changes in atmospheric
544	constituents and in radiative forcing. In: Climate Change 2007 (ed. Solomon, S. et al.). Cambridge
545	University Press, Cambridge, UK, New York, NY, pp. 129–234.
546	Grantz, D.A. and Shrestha, A. 2006. Tropospheric ozone and interspecific competition between yellow
547	nutsedge and Pima cotton. Crop Sci. 46:1879–1889.
548	Haden, V.R., Dempsey, M., Wheeler, S., Salas, W., Jackson, L.E. 2012. Use of local greenhouse gas
549	inventories to prioritize opportunities for climate action planning and voluntary mitigation by
550	agricultural stakeholders in California. Journal Environmental Planning and Management In
551	press. DOI:10.1080/09640568.2012.689616.
552	Holmes C. D., M.J. Prather, O.A. Søvde and G. Myhre 2013. Future methane, hydroxyl, and their
553	uncertainties: key climate and emission parameters for future predictions. Atmospheric
554	Chemistry and Physics, 13, 285–302
555	Horwath, W., Burger, M. 2012. Assessment of Baseline Nitrous Oxide Emissions in California Cropping
556	Systems. Contract No. 08-324, California Air Resources Board, Sacramento, CA.
557	IPCC (Intergovernmental Panel on Climate Change) 2001 Climate change 2001: the scientific basis.
558	Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
559	IPCC (Intergovernmental Panel on Climate Change) 2006. 2006 IPCC Guidelines for National Greenhouse
560	Gas Inventories, Prepared by the National Greenhouse Gas Inventories Program, Eggleston H.S.,
561	Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

562	IPCC (Intergovernmental Panel on Climate Change) 2007. Climate Change 2007: Synthesis Report.
563	Contribution of Working Groups I, II and III to the Fourth Assessment. Bernstein, L., Bosch, P.
564	Canziani, O., Chen, Z., Christ, R., Davidson, O., Hare, W., Huq, S., Karoly, D., Kattsov, V.,
565	Kundzewicz, Z.W., Liu, J., Lohmann, U., Manning, M., Matsuno, T., Menne, B., Metz, B., Mirza,
566	M., Nicholls, N., Nurse, L., Pachauri, R., Palutikof, J., Parrry, M., Qin, D., Ravindranath, N.H.,
567	Reisinger, A., Ren, J., Riahi, K., Rosenzweig, C., Rusticucci, M., Schneider, S., Sokona, Y., Solomon,
568	S., Stott, P., Stouffer, R., Sugiyama, T. ,Swart, R.J., Tirpak, D., Vogel, C., Yohe, G., Published:
569	Geneva, Switzerland. pp. 73.
570	Janssens, I.A., Dieleman, W., Luyssaert, S., Subke, J.A., Reichstein, M., Ceulemans, R., Ciais, P., Dolman,
571	A.J., Grace, J., Matteucci, G., Papale, D., Piao, S.L., Schulze, E.D., Tang, J., and Law, B.E. 2010.
572	Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience
573	3(5):315–322.
574	Kanter D., Mauzerall D.L., Ravishankara A.R., Daniel J.S., Portmann R.W., Gabriel P.M., Moomaw W.R., &
575	Galloway J.N. (2013) "A post-Kyoto partner: Considering the stratospheric ozone regime as a
576	tool to manage nitrous oxide", Proceedings of the National Academy of Sciences, 110(12):4451-
577	4457
578	Knorr, M., Frey, S.D., and Curtis, P.S. 2005. Nitrogen additions and litter decomposition: a meta-analysis.
579	Ecology 86(12):3252–3257.
580	Kongshaug, G. 1998. Energy Consumption and Greenhouse Gas Emissions in Fertilizer Production. IFA
581	Technical Conference, Marrakech, Morocco, 28 September-1 October, 1998, 18pp.
582	Ladha, J.K., Reddy, C.K., Padre, A.T., and van Kessel, C. 2011. Role of Nitrogen Fertilization in Sustaining
583	Organic Matter in Cultivated Soils. Journal of Environmental Quality 40:1756–1766.

584	Lillywhite R, Chandler D, Wyn G, Lewis K, Firth C, Schmutz U, Halpin D. 2007. Environmental Footprint
585	and Sustainability of Horticulture (including Potatoes) - A Comparison with other Agricultural
586	Sectors. Report to the Department of Environment, Food, and Rural Affairs. Warwick, UK:
587	University of Warwick.
588	Linquist, B., van Groenigen, K.J., Adviento-Borbe, M.A., Pittelkow, C., and van Kessel, C. 2012. An
589	agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change
590	Biology 18:194-209.
591	Liu, L.L., and Greaver, T.L. 2009. A review of nitrogen enrichment effects on three biogenic GHGs: the
592	CO_2 sink may be largely offset by stimulated N_2O and CH_4 emission. <i>Ecology Letters</i>
593	12(10):1103–1117.
594	Matson, P., Lohse, K.A., and Hall, S.J., 2002. The Globalization of Nitrogen Deposition: Consequences for
595	Terrestrial Ecosystems. AMBIO: A Journal of the Human Environment 31(2):113-119.
596	Natural Resources Canada (NRCan). 2007. Canadian Ammonia Producers: Benchmarking Energy
597	Efficiency and Carbon Dioxide Emissions. Canadian Industry Program for Energy Efficiency,
598	Natural Resources Canada. http://oee.nrcan.gc.ca/industrial/technical-
599	info/benchmarking/ammonia/index.cfm?attr=24
600	Ollinger, S., Aber, J., and Reich, P. 1997. Simulating ozone effects on forest productivity: Interactions
601	among leaf-, canopy-, and stand-level processes. Ecological Applications 7:1237–1251.
602	Pan, Y., Birdsey, R., Hom, J., and McCullough, K. 2009. Separating effects of changes in atmospheric
603	composition, climate and land-use on carbon sequestration of U.S. mid-Atlantic temperate forests.
604	Forest Ecology and Management 259(2):151–164.
605	Park S., Croteau P., Boering K. A., Etheridge D. M, Ferretti D., Fraser P. J., Kim K.R., Krummel P. B.,
606	Langenfelds R. L., van Ommen T. D., Steele L. P., Trudinger C. M. 2012. Trends and seasonal

607	cycles in the isotopic composition of nitrous oxide since 1940. Nature Geoscience, 5 (4): 261-
608	265.

- Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., and Hanson, C.E. (Eds): IPCC: Climate
- 610 Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the
- 611 Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Published:
- 612 Cambridge University Press, Cambridge, UK.
- 613 PE International. 2009. GaBi 4 Professional. (Life cycle inventory database). www.gabi-software.com
- Pinder, R., Davidson, E., Goodale, C., Greaver, T., Herrick, J., and Liu, L. 2012a. Climate change impacts of
- US reactive nitrogen. *Proceedings of the National Academy of Sciences* 109(20):7671–7675.
- Pinder, R.W., Bettez, N.D., Bonan, G.B., Greaver, T.L., Wieder, W.R., Schlesinger, W.H., and Davidson,
- E.A. 2012b. Impacts of human alteration of the nitrogen cycle in the US on radiative forcing,
 Biogeochemistry, In press. DOI 10.1007/s10533-012-9787-z.
- 619 Powers, R.F., and Reynolds, P.E. 1999. Ten-year responses of ponderosa pine plantations to repeated
- 620 vegetation and nutrient control along an environmental gradient. *Canadian Journal of Forest*
- 621 *Research* 29:1027–1038.
- Ravishankara A.R., Daniel J.S., & Portmann R.W. (2009) Nitrous Oxide (N2O): The Dominant Ozone Depleting Substance Emitted in the 21st Century. *Science* 326(5949):123-125.
- Robertson G.P. & Vitousek P.M. (2009) Nitrogen in Agriculture: Balancing the Cost of an Essential
 Resource. *Annual Review of Environment and Resources,* Annual Review of Environment and
 Resources), Vol 34, pp 97-125.
- Shine, K. P., Fuglestvedt, J. S., Hailemariam, K. and Stuber, N. 2005. Alternatives to the global warming
 potential for comparing climate impacts of emissions of greenhouse gases. *Climatic Change*
- 629 68:281**–**302.

630	Shine, K.P., Berntsen, T.K., Fuglestvedt, J.S., Skeie, R.B., and Stuber, N. 2007. Comparing the climate
631	effect of emissions of short and long lived climate agents. Philosophical Transactions of the
632	<i>Royal Society A</i> 365:1903–1914.
633	Shindell, D.T., Faluvegi, G., Koch, D.M., Schmidt, G.A., Unger, N., and Bauer S.E. 2009. Improved
634	attribution of climate forcing to emissions. <i>Science</i> 326:716-718.
635	Shrestha, A., and D.A. Grantz. 2005. Ozone impacts on competition between tomato and yellow
636	nutsedge: Above- and below-ground. Crop Science 45:1587–1595.
637	Sitch, S., Cox, P.M., Collins, W.J., Huntingford, C. 2007. Indirect radiative forcing of climate change
638	through ozone effects on the land-carbon sink. <i>Nature</i> 448(7155): 791–794.
639	Smart, D.R., Alsina, M.M., Wolff, M.W., Matiasek, M.G., Schellenberg D.L., Edstrom J.P., Brown P.H., and
640	Scow, K.M. Chapter 12: N_2O Emissions and Water Management in California Perennial Crops, In:
641	Understanding Greenhouse Gas Emissions from Agricultural Management; Guo, L., et al.; ACS
642	Symposium Series; American Chemical Society, Published: Washington, DC, 2011.
643	United States Department of Agriculture Economic Research Service (2012) ARMS Farm Financial and
644	Crop Production Practices: Tailored Reports. (Washington, DC)
645	Smith, P.D., Martino, Z., Cai, D., Janzen, H., Kumar, P, McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes,
646	B., and Sirotenko, O. 2007. Agriculture: In Climate Change 2007: Mitigation. Contribution of
647	Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate
648	Change [Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds)], Published: Cambridge
649	University Press, Cambridge, United Kingdom and New York, NY, USA.
650	Smith, W.N., et al., 2010. A tool to link agricultural activity data with the DNDC model to estimate GHG
651	emission factors in Canada. Agriculture, Ecosystems and Environment, 136, 301–309.

652	Snyder CS, Bruulsema TW, Jensen TL, Fixen PE. 2009. Review of greenhouse gas emissions from crop
653	production systems and fertilizer management effects. Agriculture, Ecosystems, and
654	Environment 133: 247-266.
655	Steenwerth, K.L., and Belina, K.M. 2010. Vineyard weed management practices influence nitrate
656	leaching and nitrousoxide emissions Agriculture, Ecosystems and Environment 138:127–131.
657	Stehfest, E., and Bouwman, L., 2006. N_2O and NO emission from agricultural fields and soils under
658	natural vegetation: summarizing available measurement data and modeling of global annual
659	emissions. Nutrient Cycling in Agroecosystems 74:207-228.
660	Suddick, E.C., Steenwerth, K., Garland, G.M., Smart, D.R., and Six, J. 2011. Discerning agricultural
661	management effects on nitrous oxide emissions from conventional and alternative cropping
662	systems: A California case study. In: Understanding Greenhouse Gas Emissions from Agricultural
663	Management; Guo, L., A.S. Gunasekara, and L.L. McConnel; ACS Symposium Series Vol. 1072;
664	American Chemical Society, Published: Washington, DC, 2011. pp. 203-226.
665	Sutton, M.A., Simpson, D., Levy, P.E., Smith, R.I., Reis, S., van Oijen, M., de Vries, W. 2008. Uncertainties
666	in the relationship between atmospheric nitrogen deposition and forest carbon sequestration,
667	Global Change Biology 14(9):2057–2063.
668	Syakila, A., C. Kroeze. 2011. The Global Nitrous Oxide Budget Revisited. Greenhouse Gas Measurement
669	and Management 1 (1): 17–26.
670	Thomas RQ, Canham CD, Weathers KC, Goodale CL (2010) Increased tree carbon storage in response to
671	nitrogen deposition in the US, <i>Nature Geoscience</i> 3(1):13–17.
672	Velders G.J.M., Andersen S.O., Daniel J.S., Fahey D.W., & McFarland M. (2007) The importance of the
673	Montreal Protocol in protecting climate. Proceedings of the National Academy of Sciences
674	104(12):4814-4819.

675	Wiesen P. (2010) Abiotic Nitrous Oxide Sources: Chemical Industry and Mobile and Stationary
676	Combustion Systems. Nitrous Oxide and Climate Change, ed Smith K (Earthscan, London, UK)
677	White, A., Cannell, M. G. R., and Friend, A.D. 1999. 'Climate Change Impacts on Ecosystems and the
678	Terrestrial Carbon Sink: A New Assessment', Global Environmental Change 9:S21–S30.
679	Wood S, Cowie A. 2004. A review of greenhouse gas emissions factors for fertilizer production.
680	Cooperative Research Centre for Greenhouse Accounting, Research and Development Division,
681	State Forests of New South Wales. Accessed at http://www.ieabioenergy-
682	task38.org/publications/GHG_Emission_Fertilizer%20Production_July2004.pdf on June 7, 2011.
683	
684	
685	
686	
687	
688	ex all
689	
690	
691	
692	
693	
694	
695	
696	
697	

699 Box 5.4.1 Nitrous oxide: a greenhouse gas and an ozone depleting substance [Return to text]

Nitrous oxide (N₂O) contributes to two distinct global environmental issues: climate change and 700 stratospheric ozone depletion. As a greenhouse gas, N₂O is 298 times more potent than carbon dioxide 701 and is the third most abundantly emitted greenhouse gas (after carbon dioxide and methane) (Forster 702 703 et al. 2007). Overall, N_2O is responsible for approximately 8% of the global anthropogenic greenhouse gas emissions that contribute to climate change (Forster et al. 2007). While N₂O is a relatively long-lived 704 705 greenhouse gas, in the stratosphere solar radiation eventually degrades the molecule to form the free 706 radical nitric oxide (NO) which has additional implications for the separate issue of ozone depletion. Free 707 radicals such as NO catalyze secondary reactions that convert ozone (O_3) and a single oxygen atom (O) into two molecules of oxygen gas (O₂) (e.g., $O + O_3 \rightarrow 2 O_2$). Consequently, increased N₂O emissions 708 also ultimately lead to a buildup of NO in the stratosphere, the depletion of the Earth's ozone layer and 709 710 the subsequent loss of protection from the sun's ultraviolet light. At present, N_2O is the most abundantly emitted ozone depleting substance, and will be for the remainder of the 21st century if 711 emissions continue at their current pace (Ravishankara et al. 2009). 712

N₂O is not the only substance to have these dual properties. Many ozone depleting substances,
including chlorofluorocarbons (CFCs), methyl bromide and several other gas species are also highly
potent greenhouse gases. And yet N₂O and CFCs are controlled under two different treaties: CFCs under
the 1987 Montreal Protocol and N₂O under the 1997 Kyoto Protocol. The Montreal Protocol is
considered a model of global environmental cooperation. Under the Montreal framework, the
production and commercial use of ozone depleting substances (with the notable exception of N₂O) have
been reduced by approximately 97% globally (Velders et al. 2007). This success in reducing the emissions

of other ozone depleting substances is the main reason that N₂O is now the dominant remaining ozone
depleting substance. In contrast, the Kyoto Protocol significantly undershot its first phase targets and
the parameters of its second commitment period (with a diminished membership) remain unclear.
Kyoto's uneven track record has motivated some to explore how the Montreal Protocol might be
expanded to include N₂O and thus maximize the duel ozone and climate benefits of the existing policy
framework (Kanter et al. 2013).

In California, the use of N fertilizers and livestock manure in agriculture are the largest sources 726 of anthropogenic N₂O emissions. Other sources of N₂O include fossil fuel combustion, nitric and adipic 727 acid production, biomass burning and wastewater. Chapters 7 and 8 of this assessment evaluate a range 728 729 of technical and policy strategies for mitigating N₂O emissions from these economic sectors. Practices to 730 improve fertilizer use efficiency by optimizing N rates, split applications, controlled release fertilizers, nitrification inhibitors, fertigation technologies and other types of precision agriculture have the 731 potential to reduce N₂O emissions without adverse effects on crop yields (Robertson and Vitousek 732 2009). In particular, a recent review of 35 studies found that nitrification inhibitors and controlled 733 release fertilizers on average can reduce N₂O emissions by approximately 38% and 35% respectively 734 (Akiyama et al. 2009) and are steadily increasing their market share (USDA ERS 2012). Considerable 735 progress has also been made with the adoption of catalytic conversion for both stationary and mobile 736 combustion sources and in the processes used for nitric acid production, with the added benefit of also 737 738 often reducing NO_x emissions (Wiesen 2010). Likewise, any of the agricultural strategies for reducing 739 N₂O are also likely to have positive environmental co-benefits by reducing other forms of nitrogen 740 pollution that diminish California's water and air quality.

743 Box 5.4.2 Climate impacts of fertilizer manufacture [Return to text]

Use of synthetic nitrogen fertilizer typically accounts for a high percentage of greenhouse gas (GHG) 744 emissions in conventional crop production. In addition to soil emissions resulting from the application 745 of fertilizers on crop fields, the production of the fertilizer itself accounts for a large portion of total 746 emissions. According to a selection of food life cycle assessment studies (Carlsson-Kanyama 1998; 747 748 Blengini and Busto 2009), the proportion of total GHG emissions attributable to fertilizer production can 749 range from less than 5% to 18%, depending on the type of food product being analyzed and the system boundaries of the study. For some horticultural crops, it can account for up to 70% of CO₂ emissions 750 (not counting other GHGs) up to farmgate (Lillywhite et al. 2007). Moreover, fertilizer production has 751 been estimated to account for 1.2% of the world's total energy use and 1.2% of the total GHG emissions 752 (Kongshaug 1998). 753

Nitrogenous fertilizer production relies on the Haber-Bosch process, an industrial process that 754 755 synthesizes ammonia (NH₃) by mixing nitrogen from the air with hydrogen under high temperature and 756 pressure conditions, requiring a large amount of energy - approximately 25-35 GJ/tonne NH₃ (DOE 2000). Approximately 80% of the world's NH_3 production uses natural gas as both the hydrocarbon 757 758 feedstock (as the source of hydrogen) and as the energy source, resulting in CO_2 emissions as the dominant component of GHG emissions (Wood and Cowie 2004). Various studies have estimated 759 emissions in NH₃ production to range from 1150 to 2800 g CO_2 -equivalent (CO_2 -e) per kg NH₃, or 1402 760 761 to 3415 g CO2-e per kg N content (Wood and Cowie 2004, PE International 2009). Wood and Cowie 762 (2004) report that the transparency of reviewed reports was inadequate to explain these large 763 differences between estimates, but that a large portion of the variation is likely due to variation in plant efficiencies, the use of alternative fossil fuels, and differences in methods for accounting for the steam 764

exports that result from the process (which can be used for electricity generation and therefore can be counted as a credit toward the fertilizer emissions, due to offsetting of other electricity generation). A study commissioned by Natural Resources Canada (2007) confirms that measures taken by Canadian urea production plants to improve overall energy efficiency and re-use CO₂ (see below) result in substantially lower emissions relative to facilities in other parts of the world.

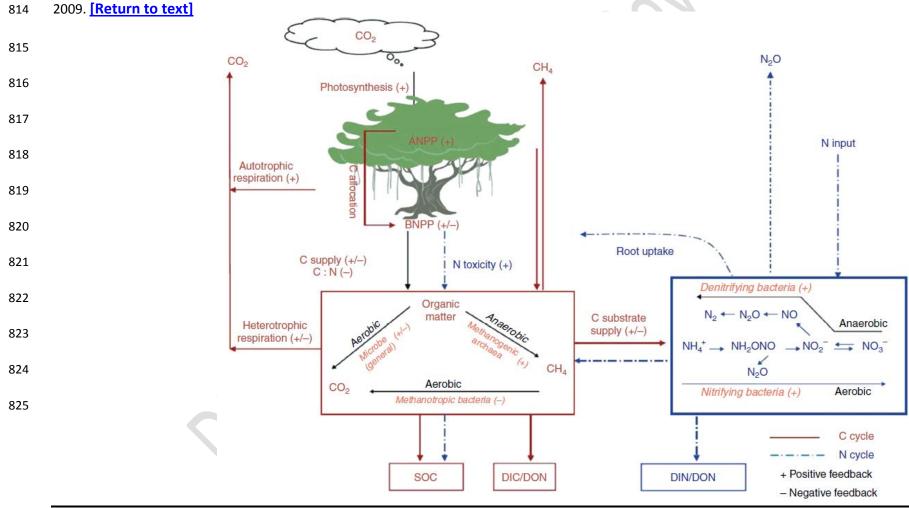
770 Manufacture of ammonium nitrate, a fertilizer used commonly in California and around the world, results in even higher GHG emissions because, after the initial synthesis of NH₃, it must be 771 oxidized at high temperature and pressure to create nitric acid, a process that, while being exothermic 772 (heat-releasing, and thus a net energy generator), also results in N_2O as a by-product. NH_3 is then 773 neutralized with aqueous nitric acid (HNO₃) to produce ammonium nitrate (NH₄NO₃). The total CO₂-e 774 775 emissions, therefore, essentially consist of both the CO₂ emissions from the initial NH₃ production and 776 the N_2O emissions from the subsequent nitric acid production. Different studies have calculated emissions ranging from 1000 to 2381 g CO₂-e per kg NH₄NO₃, or 2985 to 7109 g CO₂-e per kg N (Wood 777 and Cowie 2004, PE International 2009). 778

Urea is synthesized by combining NH₃ and CO₂ under high pressure to form ammonium
carbonate, which is then dehydrated under heat to form urea and water. Emissions calculations vary
depending on whether CO₂ use in the production process is subtracted from the CO₂ emissions from
NH₃ production, and are reported as 420 to 1849 g CO₂-e per kg product, or 913 to 4018 g CO₂-e per kg
N (Wood and Cowie 2004, PE International 2009). However, while urea may have a lower footprint in its
production phase, due to the capture and re-use of CO₂ Snyder et al. (2009) point out that some or all of
this CO₂ may be emitted again from the soil after application.

For perspective, we can calculate rough estimates for CO_2 -equivalent soil emissions resulting from application of these fertilizer products to agricultural fields. The IPCC default emissions factor for

788	direct N_2O emissions (the emissions resulting from direct nitrification and denitrification pathways for
789	fertilizer N) is 1% of applied N (IPCC 2006, p 11.11). In the case of NH_3 , which is 82% N by mass, the
790	emissions would thus be estimated as 8.2 g N $_2$ O-N per kg ammonia (calculated as 1% of 820 g NH $_3$ -N).
791	This figure translates to 12.89 g N_2O , and 3816 g CO_2 -e per kg product, or 4654 g CO_2 -e per kg N applied
792	(using the 100-yr global warming potential of 296 for N_2O). One should note that these calculations do
793	not include indirect emissions - those arising from volatilization, leaching, and runoff of fertilizer N,
794	some of which later becomes N_2O in off-site locations. As with direct emissions, these processes can
795	vary tremendously according to soil type, climate, and management practices, but the default factors
796	suggested by IPCC (2006) for use when these specific variables are unknown, would raise the total
797	emissions estimates by an additional 33%. At any rate, the GHG emissions produced in manufacture of
798	the fertilizer range from 20 to 150% of emissions produced after field application, or 23 to 60% of total
799	emissions attributable to N fertilizer use, depending on fertilizer product, manufacturing efficiency, and
800	additional variables. Given that many field studies have found that field emissions in specific locations
801	and conditions may in fact be much lower than the IPCC default factors (Snyder et al. 2009), the
802	proportion of life cycle GHG emissions attributable to fertilizer production may be correspondingly
803	higher. Nitrogenous fertilizer production, therefore, contributes substantially to total climate change
804	impacts of synthetic fertilizer use.
805	

806


807

808

811 Figure 5.4.1 Potential mechanisms regulating the terrestrial ecosystem responses of CO₂, CH₄ and N₂O production and consumption to

812 increased availability of reactive N. ANPP = aboveground net primary productivity; BNPP = belowground net primary productivity; SOC = soil

813 organic carbon; DOC = dissolved organic carbon; DIN = dissolved inorganic nitrogen; DON = dissolved organic nitrogen. Source: Liu and Greaver

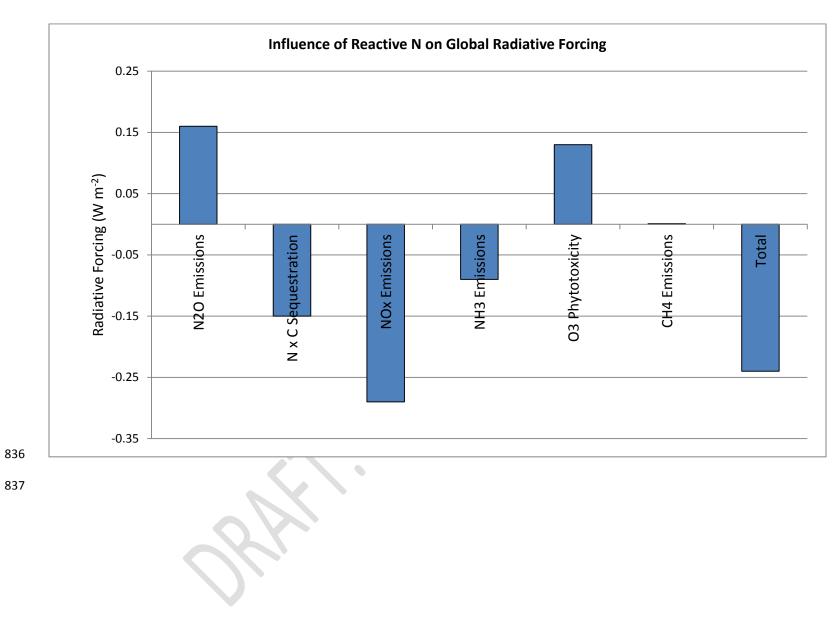
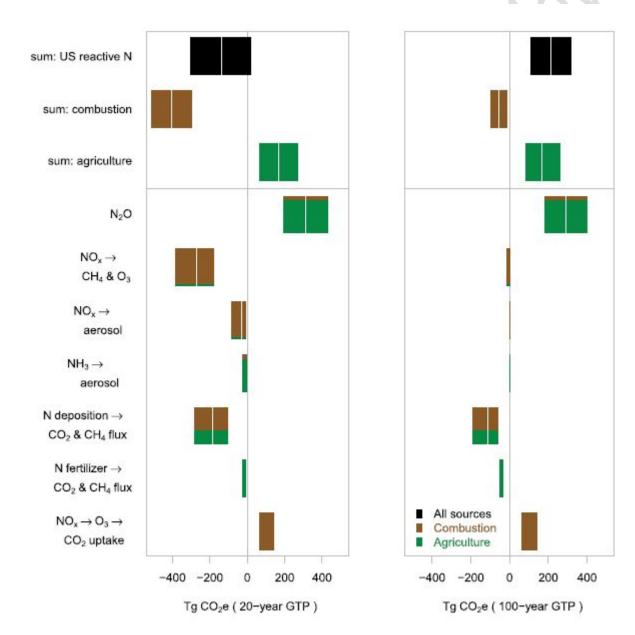
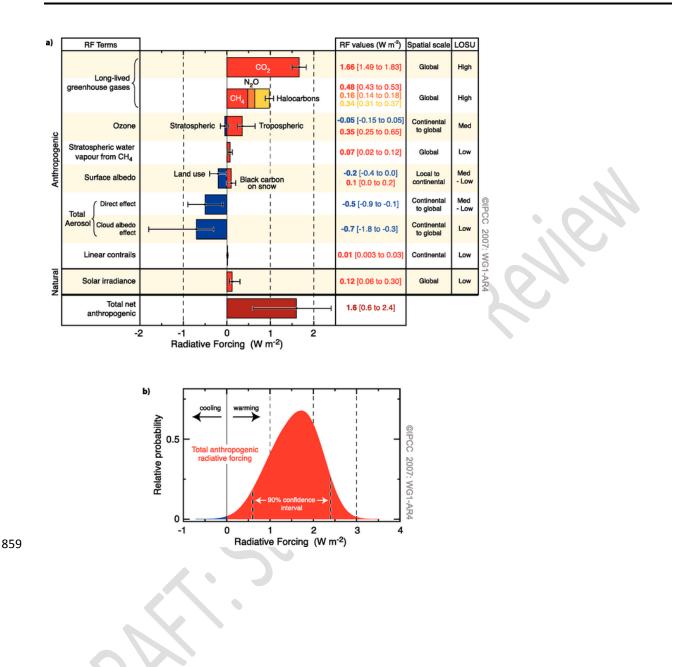


Figure 5.4.2 Types of uncertainty in nitrogen's impact on global climate regulation. This figure reflects the amount of evidence and level of

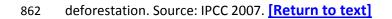

agreement for the various nitrogen-related biogeochemical processes that influence climate regulation over time. [Return to text]

	Low agreement	Medium agreement		High agreement	
Low evidence		Aerosols formed from nitrogen oxides and ammonia reflect solar radiation leading to short term cooling effects			
Medium evidence		has a cooling effect on climate in the near-term at (20yr), but a net warming effect in the long-term Nitrous oxide emissions, mostly from agriculture, se accounts for about 3% of by	Nitrogen deposition creases the flux of meth- ne from anaerobic soils ading to a net warming effect on climate Terrestrial carbon equestration stimulated v N deposition has a net pooling effect on climate	Ground-level ozone has adverse effects on plant carbon sequestration which lead to a net warming effect on climate	Stratospheric ozone increases the hydroxyl radicals and reduces the atmospheric lifetime methane, which have a cooling effect on climate
High evidence				Nitrous oxide emissions have a long-term net warming effect on the climate	Human activities that increase reactive nitrogen ir the environment have a mix of competing warming and cooling effects on climate

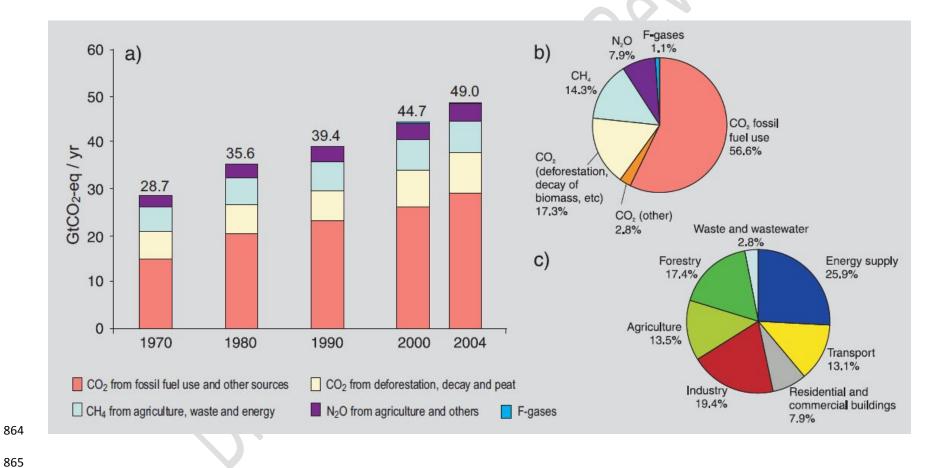
- **Figure 5.4.3 Influence of anthropogenic reactive N on global radiative forcing on the present climate.** Radiative forcing values above zero imply
- 830 a warming effect on the present global climate, while negative values indicate a cooling effect. "N x C Sequestration" includes effects of N
- 831 deposition on C sequestration and CO₂ efflux in terrestrial and aquatic systems and mineralization in soil. "NO_x emissions" contains effects of O₃
- and other aerosols formed from reactions with NO_x. "NH₃ emissions" are particulates and other aerosols formed from NH₃ in the atmosphere.
- ⁸³³ "CH₄ emissions" contains only the effects of N on CH₄ from soils, while the effects of N on the atmospheric lifetime of CH₄ are included in NO_x
- emissions. Uncertainty for total global radiative forcing ranged from -0.5 to +0.2 to W m⁻². Sources: Adapted from Erisman et al. 2011; Shindell
- 835 et al. 2009 [Return to text]



- 838 Figure 5.4.4 The climate change impacts of US reactive nitrogen emissions from combustion and
- agriculture, in common units of equivalent Tg of CO₂ (Tg CO₂e) on a 20-year and 100-year global
- 840 **temperature potential (GTP) basis.** The width of the bar denotes the uncertainty range; the white line is
- 841 the best-estimate; and the color shading shows the relative contribution of combustion and agriculture.
- 842 Source: Pinder et al. 2012a. [Return to text]



844	Figure 5.4.5 Global mean radiative forcings (RF) and their 90% confidence intervals in 2007 for various
845	agents and mechanisms (a) and probability distribution of the global mean combined radiative forcing
846	from all anthropogenic agents shown in (b). Columns on the right-hand side indicate best estimates and
847	confidence intervals (RF values); typical geographical extent of the forcing (Spatial scale); and level of
848	scientific understanding (LOSU). Errors for CH ₄ , N ₂ O and halocarbons have been combined. The net
849	anthropogenic radiative forcing and its range are also shown. Best estimates and uncertainty ranges can
850	not be obtained by direct addition of individual terms due to the asymmetric uncertainty ranges for
851	some factors; the values given here were obtained from a Monte Carlo technique. Additional forcing
852	factors not included here are considered to have a very low LOSU. Volcanic aerosols contribute an
853	additional form of natural forcing but are not included due to their episodic nature. The range for linear
854	contrails does not include other possible effects of aviation on cloudiness. The distribution is calculated
855	by combining the best estimates and uncertainties of each component. The spread in the distribution is
856	increased significantly by the negative forcing terms, which have larger uncertainties than the positive
857	terms. Source: IPCC 2007. [Return to text]


858

- Figure 5.4.6 Global annual emissions of anthropogenic GHGs from 1970 to 2004 (a). Share of different anthropogenic GHGs in total emissions 860
- in 2004 in terms of CO₂e (b). Share of different sectors in total anthropogenic GHG emissions in 2004 in terms of CO₂e (c). Forestry includes 861

863

Chapter 5: Ecosystem services and human well-being Submit your review comments here: http://goo.gl/UjcP1W

Table 5.4.1 Atmospheric lifetimes and global warming potential (GWP) values for CO₂, CH₄, and N₂O. Sources: IPCC 2007; IPCC 2001.

867 [Return to text]

			Global Warming Potential by Integration Time Period (yr)				
	Radiative	Atmospheric		- 01			
Greenhouse Gas	Efficiency	Lifetime	GWP 20 yr	GWP 100 yr	GWP 500 yr		
	W m ⁻	yrs		CO ₂ equivalents			
	²/ppmv			5			
CO ₂	0.01548ª	~100 (5-200) ^b	1	1	1		
CH ₄	0.00037	12	72	25	7.6		
N ₂ O	0.0031	114	289	298	153		

^aIPCC 2007 does not give a radiative efficiency for CO2. IPCC 2001 lists the radiative efficiency of CO₂ as 0.01548 W/m²/ppmv, but emphasizes this figure is to be used only for the computation of global warming potentials.

^bPrecise estimation of the atmospheric lifetime of CO₂ is complicated by the multitude of removal mechanisms involved. Accepted values are around 100

871 years, with a wide error range.

o	7	2	
ō	1	Z	

873

874

875

Table 5.4.2 Processes altered by reactive N that have radiative forcing effects. The size of the short-term (20 yr) and long-term (100 yr) effect

is relative to other processes altered by reactive N. Source: Adapted from Pinder et al. 2012a. [Return to text]

879

Process altered by		Relative size o	of effect		
reactive N	Radiative forcing effect	Short-term	Long-term	Description	References
N ₂ O	Warming	Large	Large	Potent & long-lived greenhouse	Parry et al. 2007;
			$\langle X \rangle$	gas from agriculture, fossil fuel	Smith et al. 2007
				combustion, and sewage	
N deposition/fertilizer \rightarrow	Cooling	Large	Large	Generally increases C stored in	Sutton et al. 2008;
CO_2 uptake by plants		18		vegetation and soils of natural	Liu and Greaver
		N.		and agroecosystems	2009;
	C				Thomas et al. 2010
N deposition/fertilizer \rightarrow	Warming	Small	Small	Increases CH ₄ emissions and	Liu and Greaver
CH₄ efflux from soil				reduces CH ₄ oxidation	2009
$NO_x \rightarrow ground \ level \ O_3 \rightarrow$	Warming	Large	Large	NO_x forms tropospheric O_3 that	Felzer et al. 2004;
CO ₂ uptake by plants	$\mathcal{I}\mathcal{L}$			damages plant foliage and	Sitch et al. 2007;
				decreases C storage	Pan et al. 2009;
Chanter F. Facultan convice					

Chapter 5: Ecosystem services and human well-being Submit your review comments here: http://goo.gl/UjcP1W

					Arneth et al. 2010
$NO_x \rightarrow O_3 \& CH_4$ in	Cooling	Large	Small	NO_x effects formation and	Shindell et al. 2009
atmosphere				destruction of O_3 and CH_4 in	
				upper atmosphere	
$NO_x \rightarrow aerosols$	Cooling	Medium	Small	Aerosols reflect and scatter solar	Shindell et al. 2009
				radiation	
$NH_3 \rightarrow aerosols$	Cooling	Small	Small	Aerosols reflect and scatter solar	Shindell et al. 2009
				radiation	
			\mathcal{O}		
		18			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
		CC.			
	$U_{k'}$				

#### Table 5.4.3 California greenhouse gases and percent of annual total emitted in 1990, 2000 and 2009. Source: CARB 2010.

#### 890 [Return to text]

		1990	20	000	2009	
Greenhouse Gas	Emissions	% of Annual	Emissions	% of Annual	Emissions	% of
	MT CO ₂ e	Total	MT CO ₂ e	Total	MT CO ₂ e	Annual
						Total
CO ₂	390.0	90	408.9	88.1	393.2	86.1
CH₄	25.1	5.8	28.0	6.0	32.0	7.0
N ₂ O	16.5	3.8	16.0	3.5	15.2	3.3
SF ₆	<1.0	<1.0	1.3	<1.0	1.1	<1.0
Other HFCs*	<1.0	<1.0	10	2.1	15.3	3.3
Total	433.3		463.7		456.8	

^{891 *}Other HFCs includes all other halogenated fluorocarbon gases

892

893

894

896	Table 5.4.4 Estimated emissions of N ₂ O, NO _x and NH ₃ by source and fate in California during 2005. Percent of each gas emitted by various
897	sources are also provided. All N ₂ O emitted was assumed to remain in the atmosphere. NO _x and NH ₃ , form secondary chemicals, aerosols and
898	particulates and a certain fraction of the N in these constituents are deposited in California and the remaining are exported beyond state
899	boundaries. As such, as export to the atmosphere or beyond the state boundary was calculated as the difference between total emissions and
900	deposition. This table was developed using input and output data from the California N mass-balance developed in Chapter 4 of this report.
901	[Return to text]

#### [Return to text] 901

			Statewide	Emissions		
Source and Fate of N Emissions	N ₂ O		NO _x		NH	3
Source of N Emissions	Gg N yr⁻¹	%	Gg N yr ⁻¹	%	Gg N yr⁻¹	%
Fossil Fuel Combustion	9	23.7	359	88.4	36	13.4
Soil	24	63.2	24	5.9	67	25
Manure	2	5.3	0	0	141	52.6
Upwind sources	0	0	20	4.9	20	7.5
Wastewater	2	5.3	0	0	0	0
Fire	0	0	3	0.7	3	1.1
Surface Water & Ground Water	2	5.3	0	0	0	0

Chapter 5: Ecosystem services and human well-being Submit your review comments here: <u>http://goo.gl/UjcP1W</u>

California Nitrogen Assessment – Draft: Stakeh	older Review				10 June 2015	
Total	38	100	406	100	268	100
Fate of N Emissions						
N deposition in California	0	0	135	33.3	67	25.0
Export to atmosphere or beyond Californ	ia 38	100	270	66.7	201	75.0
902						
903						
904			\$			
			$\langle 0 \rangle$			
905						
906						
907			0			
908						
909						
910	$\sim$	<b>O</b>				
911						
912						
012						
913						
914						
915						

### 916 Table 5.4.5 Default values and uncertainty range for IPCC emission factors used to calculate direct and indirect N₂O emissions from

# 917 agricultural soils in the California Greenhouse Gas Emissions Inventory. Sources: IPCC 2006; CARB 2009. [Return to text]

Category	Emission Factor Description	Default Value	Uncertainty
			Range
Direct N ₂ O	Proportion of N applied to soils via synthetic fertilizer, organic fertilizer,	0.01	0.003 - 0.03
emissions	manure, N-fixing crops that is emitted as $N_2O$		
	Proportion of N deposited by livestock on pastures, rangeland, and	0.02	0.007 - 0.06
	paddocks that is emitted as $N_2O$		
	N emitted as $N_2O$ per unit area of cultivated organic soils (kg N per ha)	8	2-24
Indirect N ₂ O	Fraction of synthetic fertilizer N that volatilizes	0.1	0.03 - 0.3
emissions	Fraction of organic fertilizer and manure N that volatilizes	0.2	0.05 - 0.5
	Leaching rate: Fraction of applied N lost to leaching and runoff	0.3	0.1 - 0.8
	Proportion of N volatilized and re-deposited on soils that is emitted as $N_2 O$	0.01	0.002 - 0.05
	Proportion of N lost to leaching and runoff that is emitted as $N_2O$	0.0075	0.0005 -0.025

#### 920

918